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1. INTRODUCTION

The space ¢, is the linear space of all sequences x = {x;} converging to
zero, with the norm of x given by || x || = sup | x; {, the supremum taken over
all j. The symbol [c, , ¢g] will denote the linear space of all bounded linear
operators from ¢, to ¢, . If T € [¢,, ¢,], then the norm of T is the standard
operator norm given by

I T = sup{| T®I: x € e, | x || < I

If M is a subset of the normed linear space X and x e X, then a point
X, in M is said to be a best approximation to x from M if | x — xg|| =
inf{ll x — y|l: ye M}. If each x in X has a unique best approximation in M,
then M is called a Chebychev subset of X.

In this paper we are concerned with the characterization of best approxi-
mations in a finite dimensional subspace M of [¢;, ¢,], and the determination
of conditions under which M is Chebychev. An element x in X has x, as
a best approximation in a subspace M if and only if x — x, has 0 as a best
approximation in M. Therefore, to characterize best approximations in M,
it suffices to provide conditions under which an element has 0 as a best
approximation in M. It is known (see, e.g., [2, p. 20]) that if M is a finite
dimensional subspace of X, then each x € X has a best approximation in M.
Thus, if M is non-Chebychev, there exists some element x € X with two best
approximations in M.

By a result in [5], each bounded linear operator in [¢, , ¢,] can be repre-
sented by an infinite matrix of scalars. We use this fact in Section 2 to charac-
terize best approximations in a finite dimensional subspace of [¢,, ¢] In
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Section 3 we will characterize one-dimensional Chebychev subspaces in
[co, €o), and in Section 4 present a necessary condition and a sufficient
condition for a finite dimensional subspace of ¢, , ¢;] to be non-Chebychev.
Finally, we will show that if a bounded linear operator T in {¢, , c4] is repre-
sented by an infinite matrix, then the second adjoint T#* in [/, , /] may also
be represented by that matrix. This permits the reformulation of previous
results in terms independent of the operator’s matrix representation.

Unless otherwise stated, all notation will correspond to that of [3]. All
scalars will be assumed to be real. Let X be a linear space with norm | - |i.
The conjugate space X* will be assumed to have the usual operator norm,
For each x in X, £ will denote that functional in X** defined by #(x*) = x*(x)
for all x* in X* and X = {#: x € X}. The norm closed unit sphere of X will
be denoted by S(X). For any set 4, cl(4) will mean the norm closure of A.
The annihilator M+ of a subspace M of X is defined by

M+ = {x*e X*: x*(y) = Ofor all ye M}.

if x; ,..., x,, are vectors in the linear space X, then [x, ,..., x,,] Will denote
the linear subspace of X spanned by these vectors. We will assume, unless
otherwise stated, that [x, ,..., x,,] has dimension n. If Y is a normed linear
space, then by (Y X -+ X Y), (n summands), we will mean the linear space
of all ordered n-tuples of the form y = (y,,...,y,) for y;e ¥, i=1,.,n
with norm defined by |yl = max{||y;ll:1 <i<<n}. The symbol
(Y X =+ X Y), (n summands) is defined similarly, with the norm in this
case defined by || y || = Z:;l I 7: [ The following lemma is then easily seen.

LeMMA 1.1. Let Y be a normed linear space. If for f= (fi,.,fu) €
(Y* X -+ X Y*), (n summands), we write f (x; ,..., X} = fi(xy) -+ - + ful(xn),
for all (xy,..,x)eE=(Y X =+ X Y), (n summands), then E* can be
identified with (Y* X --- X Y*); {n summands).

We state here for convenience a known result which may be found in [4].

THeOREM 1.2. Let M be a subspace of the normed linear space X, and let
x e X — cl(M). Then x has 0 as a best approximation in M if and only if there
exists fin M\ f)| = 1, such that f(x) = || x||.

2. CHARACTERIZATION OF BEST APPROXIMATIONS

Each bounded linear operator in ¢, , ¢,] may be represented by an infinite
matrix of scalars according to the following theorem found in S, p. 217].
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THEOREM 2.1. If A€c]cy, c,), there exists a unique infinite matrix of
scalars (a;) (i, j = 1, 2,...) such that

() A4l =sup; T lagl,
(11) limi_,m ai,- — 0, j = 1, 2,...,

(i) ifx={x}, y={riec, with y = Ax, then y; = ¥ a;x;,
i=1,2,..

Conversely, if (a;) (I, ] = 1, 2,...) is an infinite matrix of scalars such that
sup Z,w:l | ai; | (supremum taken over i) is finite and such that (ii) holds, then
the equation in (iii) defines a member A of [c, , ¢,] whose norm is given by (i).

A problem in considering the space [c, , ¢,] is that there is no convenient
way to represent the bounded linear functionals on the space. However, if we
restrict the matrices in [¢, , ¢,] to a fixed finite number of rows, we obtain the
restricted space E = (J; X - X l), . It is known (see [3]) that /;* can be
identified with /., . Then since £* can be identified with (/, X -+ X [,); by
Lemma 1.1, we know what form the bounded linear functionals on the
restricted space take. Hence, to obtain some of the following results, we
consider a selected finite number of rows in the matrices.

In order to characterize best approximations in a finite dimensional sub-
space M of [c,, ¢,], we will need the next lemma. If K is a set of positive
integers and A = (a;;) is an infinite matrix, then 4 | K denotes the matrix
whose rows are precisely the rows (a;;) (j = 1, 2,..) of 4 for which i e K.

LemMa 2.2. Let A,,..., A, be linearly independent operators in [c,, ¢,]
with M = [A, ,..., A,). Then

(@) there exists a positive integer p such that if K, = {i:1 < i < p}
and A; = A; | Kye(ly X =+ X L)y (p summands), i = 1,..., n, then 4, ,..., A,
are linearly independent.

(b) given Be[cy, col, there exists a nonnegative constant Q such that
for any positive integer s = p, if iy < - < i;_, denote any fixed positive
integers with iy > p, Ko ={i: 1 <i<pori=1i iy, A= A;|K,,
Bs = B|K,, and A° = ¥, NA® is a best approximation to B in
[Ay5,..., A,5), then we have | X, | < Q,i = 1,...,n.

Proof. For each positive integer n, let K, = {i: | < i < n} and define
the mapping ¢, on M by

@A) = A" = A|K, for Ain M.

We have A€ (l; X -+ X ), (n summands). For any n, ¢, is a bounded
linear transformation and is, thus, continuous. Let 4 = (a;;) € M with
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[| 41 = 1. Then there exists i = n, such that 3'_, | an,i | > (1/2). Therefore,
| @a (DI > (1/2). Let I = {g, (C): Ce M with H Pa, (C)l > (1/2)}. Let
Uy = <p“(01) so U, is open in M Let M' = {Ain M: HA Il = 1}, Then M’
is a closed subset of S(M), which is compact since M is finite dimensional.
Therefore, M" is compact. Since {U,: A M'} is an open covering of M’,
there exists a finite subcover {UB yeeny Up [} of M’ for B,,..., B, in M’, Let
p = max{np_,. ’nBz} fAe M, thenA € Uy forsomei = 1,..., £. Therefore,
I pp(A)] > (1/2) Hence, for all 4 in M’, we ‘have T ep(A) > (1/2)

Now @, (4) = A = A;, i = 1,..,n. Suppose A,,..., A, are linearly
dependent. Then there exists 4 in M, A = 0, such that ¢,(4) = 0. However,
AlllAlle M', s0 || p,(A/ll AIDI| > (1/2), a contradiction. Therefore, 4, ,..., 4,
are linearly independent, and (a) is proved.

To prove (b), let ¢, be defined on M by ¢,(4) = A = 4| K, for 4 in
M. Then g, is a continuous linear transformation from M onto [4, ,..., 4,].
Also ¢, is one-to-one since 4, ,..., 4, are linearly independent by (a). Thus,
@, has an inverse ¢, which is clearly a linear transformation. By the open
mapping theorem, ¢! is continuous and, hence, bounded.

Now define a new norm || - |, on [4; ,..., 4,] by

n
1) Z 9;4;| = max|9d,|,
o1 1
where the maximum is taken over 1 <7 <{ n. Since in a finite dimensional

space all norms are equivalent, there ex1sts a positive constant ¢ such that
Al <cl{d| for all 4in M. Let Be [cy, ¢y]. Then let @ = 2c | 93 [lll Bl

Let s be a positive integer such that s > p, and let 4,5, B*, and A4° be as
given in (b). Define ¢, on M by ¢(C) =C* = C | K, for any C in M. We
can easily see that || ¢;t|| exists and I qoslH Il 3!l Since A* is a best
approximation to B® in [A4%,..., 4,°], we have || 45| < || B*— 4%| +
| B|| < 2| BJl. Thus,

n

1

=1

el il AT < 2ell @5 il Bll = Q.

Therefore, | A; | < Q,i = 1,..., n, and (b) is proved.

Now we are ready to give necessary and sufficient conditions for an element
to have 0 as a best approximation in a finite dimensional subspace of [¢; , ¢,].
Without loss of generality, we may assume that each of the operators
generating the subspace has norm equal to 1.

THEOREM 2.3, Let A, = (af) elc,, o) with || Al = |, k = 1,...,n, and
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let B = (b;;) €[cy, c,]- Then B has O as a best approximation in [A, ..., A,]
if and only if for all € > 0, there exist m positive integers ky ,..., kn, , m I,
sequences f1,..., f™ with || f¢|| = 1, i = l,..., m and m scalars ry ..., r,, with
r,>0,71=1,.,mand Z,.";l r; = 1 such that
W) SLinTiafid, =0 k=1L.,n,
(D) | Xy re S fibe; — I Bl < e
Proof. Choose p and @ as in Lemma 2.2. Suppose B has 0 as a best

approximation in [4,,..., A,]. Let Ay ,.., A, e[—0, 0] and € > 0. Then
there exists i = k(A ,..., A,) = k(A) such that

) 2 bews — M + 0+ Mgl
o1

— 1B — Ndy + o £ LAl | < (/6). 1)

Let I 5o o € [— O, Q). It is easily seen that the function ¢(u, ,..., ) =

27_1 | brons — ([haw), + -0 - paai;)| is continuous at (A ..., A,). There-
fore, for each i = 1,..., n there exists an open interval

L, = {u:{p — A | < (¢/6n)}

such that for y; ,..., p, € [—Q, Q], if u; e I, for each i = 1,..., n, then

‘ Y bry; — (m@koys + * + pali))l
i

— > | by — (Makws + -+ Adin)] | < (€/6). )
4

Now using (1) and (2) we obtain for u,,..., p,€[—0, @] and piely,,
i=1l,.,n

‘Z | ey — @i + = + tnlins)]
7

— | B~ (pydy + =+ + pnda)ll | < (€/2). 3)

For a scalar Ae[—Q, Q], let I, = {u: | p — A | < (¢/6n)}. Then
{I, : Ae[—Q, @I} is an open covering of the compact interval [—Q, Q].
Consequently, there exists a finite number of scalars )\1 sy A In [— 0, O]
such that [—Q, Q1C Us_. I, . Consider k(A,) = k(/\p yeees 1, ) where A, may
be chosen from A, to A, for i = 1,..., n. Thus, we have s* rows. Now add to
these the first p rows as obtained by Lemma 2.2 (2). Let m be the number of
distinct rows obtained, so m < p + s”. Label these rows by &, ,..., k,,, .
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Let Ay ,..., A, be arbitrary scalars in [—Q, Q1. Then for each i = 1,..., n,
A€ I,, for some ¢; = 1,..., s. Now k(}t,1 yeors )\,“) = k, for some £ = 1,..., m.
Then we may apply (3) to obtain

Z \ bk[j - (Ala}cﬂ + 4 Anall::.ﬂ)‘ — || B — (AlAl 4+ AnAn)H < (6/2)

It follows that

I max Z | brps — ()\la;f,j + o Adly)l

1</<sm

— B — M4y + -+ Aada)l | < (€/2). 4)

Define, respectively, A, ,..., A,, B= A4,,.., 4,,B| rows ky ,..., k, € E =
(L X =+ X I)» (m summands). By Lemma 2.2 4,,..., 4, are linearly
independent. By (4) we obtain

1B — WAy + = + XAl — | B — Qudy + - + Aadollf < (e/2). (5)

Consider the quotient space E/[A, ,..., A,] with the quotient mapping .
We have ||#Bf = inf)| B — (\\ 4, + - + X, 4,)|, where the infimum is
taken over ;& [—Q, @], i = 1,...,n by Lemma 2.2 (b). We know || 7B || <
IBil <|I|B], so||wB||— || Bl < e. Utilizing (5) and the fact that B has 0
as a best approximation in [4, ,..., 4,], we see that

| Bl < (¢/2) +inf|| B — (MA; + -+ + A AL,

the infimum taken over A; € [—Q, Ql,i = 1,...,n. Thus, | B|| — | 7B|| < e.
Hence,

7Bl — I Bll| <e (©)

Suppose B # 0. Then by the Hahn-Banach theorem there exists F in E*,
| F|| = 1, such that F({4,,..., 4,]) == 0 and F(B) = {{#B|. By Lemma 1.1,
E* can be identified with (/, X --- X I.), (7 summands). Hence, F can be
represented by an m-tuple of I, sequences (gl,...,g™) where 1 = || F|| =
Y.l gtll. Without loss of generality, assume {{g¢{| > 0 for i = 1,..., m.
Then define

fi=glgl, ri=lgl i=1L.,m
Then Zﬁl ri=1and | fill =1 for i = 1,....,m. For T = (t;;) € [¢q > Col,

F(T) = Xii1 r: Tiea fitxs - Then (i) holds since F([4, ,..., 4,])) = 0. Since
F(B) = || wB||, we have | F(B) — || B||| < e by (6). Hence, (ii) holds.
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Now if B= 0, select C € E,C ¢ [4, ..., 4,]. Again apply the Hahn-Banach
theorem to obtain F in E*, | F|| = 1 such that F([4,,..., 4,]) = 0 and
F(C) = ||=C|. By the same argument as above, (i) holds, and (ii) holds
since B = 0 = || B|.

To show sufficiency, let ¢ > 0. Then there exist k;, ft, and r;, i = 1,..., m
as stated in the theorem such that (i) and (ii) hold. For T = (¢;;) € [, ],
define F on [¢, , ¢,] by

FT)=Yr ) fity;.
i=1 i=1
Now | F(T)| < || T||, so Felcy, co]* and || F|| < 1.
We have F(4,) = 0 for k = 1,...,n by (i), and | F(B) — || B||| < e by (ii).
Let A, ,..., A, be arbitrary scalars. Then F[B — (A4, + - + A,4,)] = F(B).
Hence,

| Bll — € < F[B— (AA; + -+ 4+ AdR)] <[ B — (Mdy + =+ -+ Andl.
But this can be shown for all € > 0. Therefore,
| B— (Mdy + = + A4 = || BY.

Since the scalars were arbitrary, B has 0 as a best approximation in
{4, ,..., A,]. This completes the proof.

3. CHARACTERIZATION OF ONE-DIMENSIONAL CHEBYCHEV SUBSPACES

DerFINITION. If P; and P, are subsets of the set 7 of all positive integers
such that P, N P, = ¢ and P, U P, = I, then we say that P, and P, form
a partition of I. Let A = (ay;) € [¢, , ¢o)- Then A satisfies the partition property
if and only if there exists 6 > 0 such that for all i and for all partitions P, ,
P, of I, we have

Y layl— ¥ layl| >,
jePy JjePy

We will show that if 4 5= 0, then [4] is a Chebychev subspace of [c,, ¢]
if and only if A satisfies the partition property. Before we can prove this
result, however, we will need two lemmas.

LemMA 3.1. Let A = (ay)€lcy,co)- Then the partition property fails
to hold for A if and only if either there exists i and a partition P, , P, of I such
that

ay| — Z |aij||-“:0,
“ )

jePy JjePy
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or there exists a sequence i, < - < i, < -+ and corresponding partitions
Py, Py such that | Ticpa | @i 5| — Zieppn | aijll < (U/n).

Proof. 1f either of the conditions hold, 4 clearly fails to satisfy the par-
tition property.

Conversely, suppose the partition property fails to hold for 4. To simplify
notation in this proof, let QG, Py, Py) = | Xjep, | @i; | — Ziep, | @y II. If
the first condition holds, we are finished. Therefore, assume there does not
exist i and a partition P, , P, such that Q(, P, , P,) = 0. Since the partition
property fails to hold for A, there exists i and P;, P, such that
Q(, Py, P;) < L. Let i; be the smallest such i where this occurs, i.e., for all
i <1, and for all P, P, we have Q(i, P, , P,) == 1, but there exists a partition
Pj, P,t such that Q(, , P, P,Y) < 1.

Now there exists i and P, , P, such that Q(, Py, Py) < (1/2). We know
i < i, is impossible. Suppose the only possible choice is i = i; . Then we
must have one row i and a sequence of partitions P,”, P,* such that
o(, P, P,") < (1/n). But we will show that this is impossible.

For each n, define g» = {g;"} by

g = 1 for jePy” a; =0, or jePy, ay<0,
j —1 for jEPln, a; < 0, or jEPS, ay = 0.

Then Q(, Pi*, Py") = | Y5y gas; | < (1/n). For the fixed i above, let
x = {a;;} in [, . Consider the function f: R — R defined by f(x) = | x |.
Now define G:l, —~ R by G = f£. Then for g ={g;} in l,, G(g) =
| 2;;1 a;;g; 1. Fori = 1, 2,..,, let ¢; be that sequence in /; which has 1 in the
ith place and 0 elsewhere. Define F; : I, — Rby F; = fé;fori =1,2,....

Since || g || = 1 for each n, we have g" € S(I,) = S(/;*), which is compact
in the weak* topology by Alaoglu’s theorem (see [3, p. 424]). Let

A =1{g={g}eSU.): g | =1forallj}

Then g” € A for all n, so inf G(g) = 0, where the infimum is taken over all
ge A. Now F(g) = | g(e)|. Then {g e SU.): | gle;)| = 1} is weak* closed
since F; is weak* continuous. Therefore, 4 = [, {g€S(l.): | gle)] = 1} is
weak* compact. Since G is a weak* continuous function on A, there exists
g € A such that G(g) = 0, i.e., there exists g = {g;} where | g; | = 1 for all j,
and | 3; a;;2; | = 0. Let those j which give rise to terms | a;; | for the product
2;;8; bein P, , and the remaining jin P, . Then we have exhibited a partition
P, , P, such that Q(i, P, , P,) = 0, a contradiction. Therefore, there does not
exist one row i and a sequence of partitions P,?, P,* such that
@, Py, Py") < (1/n).

It is, therefore, possible to select i > i, and P, , P, such that Q(i, P, , Py) <
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(1/2). Let i, be the smallest / > /; where this is possible. Assume we have in
this way selected 7, <C -+ << i, so that for each n, there exists P,*, P," such
that Q(i, , P,",P,") < (1/n). We know there exists i and P;, P, such that
Q(i, P, , P,) < [1/(n + 1)] since the partition property fails to hold for A.
Suppose the only possible choice for this/isi < i, . Thenforallk = n + 1,
there exists i, < i, and P,*, P,* such that Q(i, , P\*, P,*) < (1/k). For each
s = 1,...,n, if i = i,, there exists a positive integer k, such that for all P, ,
P,, OG,, Py, P,) = (1/k,), since we have previously shown that for any
one row i, it is impossible to obtain for all # a partition P,", P," such that
oG, P,*, Py") < (1/n). Let k = max{k,,....k,, n+1}. Then k = n+ 1,
so there exists 7, < i, and P;*, P,* such that Q(, , P\*, P,*) < (1/k). How-
ever, for all i < i, and all P,, P,, in particular for i, and P,*, P,*, we have
O, , Pi*, P,*) = (1/k), a contradiction. This completes the inductive
argument and proves the lemma.

LemMA 3.2, If |B— A | = | B — MA|| for all scalars X in [A;, A]
(where Ay << A,), then B has XA as a best approximation in [A] for all A in
[)‘1 ’ )‘2]

Proof. let||B— Ad| = | B— AA | for all Ain [A;, A,]. Suppose A4 is
not a best approximation to B in [4]. Then there exists u € R such that
|B—udl <||B— Ad|. Either w > A, or o << A;. Assume p > A, since
the other case is similar. Define o = [(A, — p)/(A; — w)]. Then « € (0, 1)
and A, = aA; + (1 — o) p. Hence,

[B—Xdll <ol B—Md]+ (1 — o)l B—pd| <[ B— M|,

which is a contradiction. This proves the lemma.

THEOREM 3.3. Let A = (a;)€lcy, ], A # 0. Then [A] is a Chebychev
subspace of {c, , ¢y if and only if A satisfies the partition property.

Proof. Suppose the partition property fails to hold for A. First, let us
consider the case where there exists i, such that a;; = 0 for all j. Define
B = (by;), where b;; = [ 4], and b;; = 0 for i # iy, for all j, and for

i=1i,, j=2,3,... Then Belc,,¢c,) and | B]| = A|l = || B — 4. For
all A in R, 2;;1 [ b;; — Aa; ;| = [ A|. Hence, for all A in R, we have
|B— AA4|| = ||A]l = || Bll. Thus, Bhas 0 and A # 0 as best approximations

in [A], so [4] is not Chebychev.
Now suppose that Z;L la;;| > 0 for all i. Since A4 fails to satisfy the
partition property, there are two possible cases by Lemma 3.1.

Case 1. There exists i, << -+ << i, < -+ and corresponding partitions
Py", Py* such that |3jepnla; ;| — Zjepn ! a; ;1| < (1/n). Therefore, for
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each n there exists €" = {¢;”} in [, with | e," | = 1 for all j and all » such that
0 < Z, 1€ 5 < (1/n). Then lim,,_,,, Z,,l €"a; ; = 0.

Let s = sup Z,=1 la; ;s the supremum taken over all n, so 0 <s5 <
| 4] < co. Now there exists Ag, 0 << Ay < 1 such that Ay} 4| < 5. Define
Op=5— Yol a; ;| = 0. Now let B = (b;;), where b;; is defined as follows:

0 for i1, foranyn = 1,2,...,
bﬁ == Gjn \ ain,- ‘ + Gj”(o'n/in) fOI‘ ] = 1,..., in and n = ], 2,...,
€| a; ;| for j>1i, and n=1,2,...

It is easy to see that lim,,., b;; = O for all j. The next part of the proof will
show that || B|| = s <C o0, which will show by Theorem 2.1 that B € [, , ¢,].
Let A be given, 0 <C A < Ay . If i # i, for any n, then

by — Aay | < Al 4] <.

s

1

w
I

Ifi = i, , we have

Yo lbiy—Aai 51 =Y lldai;l + (o,/in) — Aes"a;

j=1 §=1

+ Y ] — Aerany |

jedptl

_Zlaz,,fl’%Z(o'n/l)_Azeyaza

j=1 J=1

o0 o)
+ Y lal—A Y emai;

F=iyt1 J=in+1
©
= § - A Z €j"a,~“,~ < S.
i=1

Then since lim,,_ 2?_1 "a; ; = 0, we must have || B — A || = s for all A
in [0, Aj]. Then by Lemma 3.2, B has A4 as a best approximation in [4] for
all Ain [0, A,]. Therefore, [4] is not Chebychev.

Case 2. There exists i, and partition P, , P, such that

> lag = ¥ lag | =0
jePy

jePy

Therefore, there exists {e;} in [, with | ¢; | = 1 for all j such that 377, €;a; ; = 0.
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Let s = ¥y a;;], 50 0 <s <[ Al Then there exists Ay, 0 <2 <1
such that A, || 4 )] < s. Let B = (b,,) be defined by

ejlaij] if i:io.

biJ':g

Then Belc,,c,). Let Ae0,A)]. For i, Z:a [ by — Aay | <s. If

i=i,

Z | bioj — )‘aioj | = Z I Aiy5 | — )‘Gjaioj | = s.
j=1 =1
Therefore, || B— A4 || = s for all A in [0, A,). By Lemma 3.2, {4] is not
Chebycheyv.

We must now show sufficiency. Without loss of generality, assume
|l A)] = 1. Suppose [A] is not Chebychev. It is easy to see that there exist B
in [cg, ¢l | Bl = 1, and A > O such that B has 0 and 424 = 0 as best
approximations in [4]. Let € > 0 and € = eA. Then by Theorem 2.3 there
exist m positive integers &y ,..., k,, , m I, sequences f,..., f™ with || f| = 1,
i=1,..,m, and mscalars ry ..., r, with r; > 0,i = 1,..,mand X r; = 1
such that

() ity Tpafian; =0,
() | Zimr Tiea il — 1] < €.

Then there exists i such that

Zf,bki, 1'<e )

j=1
Define {g;} in /, by

! 1 if bk,-i = 0.

Then gjbkij = | by | and | g; | = 1 for all j since the scalars are real. Since
{1t ]l = 1, it follows that

Z gjbkd = Z ﬁibk¢f . @)

j=1 j=1

Next we will show that | Y., giari| < (¢'/A) for the selected i If
Z,,l giar,; = 0, there is nothing to prove. Suppose Py 3 giax; > 0. Now
IZJ-Igj(bk‘aiAakia)[ <IBLA|=(Bf=1 since 0 and 44 are
best approximations to B in [4]. Then using (1) and (2), we have

640/9/2-5
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= 2:;1 g,'(bk,.j +Agy) > 1 —€ + A 2;11 giay,; - Therefore,

o

Z 8l 4

i=1

< (€/A) = e.

If —A ):;o 184x; > 0, the result follows in a similar fashion. Let P, be the
set of those j where gk, = | ax; |, and let P, consist of the remaining j.
Then we have exhibited k and a partition P, , P, such that ] Z,EP | ax ; » | —
Lier, | Qry [[ < €. Hence, A4 fails to satisfy the partition property, and the
theorem is proved.

4. RESULTS FOR FINITE DIMENSIONAL SUBSPACES

We return in this section to an arbitrary finite dimensional subspace M
of [¢,, ¢o], and now present a necessary condition for M to be non-Chebychev.

THEOREM 4.1. Let M = [A,,..., A,] be a non-Chebychev subspace of
[cy » Co), where A, = (ak) € [cy, cp) with || A, )| = 1, k = 1,..., n. Then there
exists A = (ay) in M, | A|| = 1, such that given € > 0, there exist m positive
integers ky ,...,k,, ond o = (oy;) in M+ with o;; =0 for i # kg, ki s
sup; | a5 | < oo forall i and ¥, sup; | oy ;| = 1 such that

() ifBeley, col* and|la + Bl < 1, then | B(A)] <
(i) 2:11 l Z;‘il oy | < €.

Proof. Since M is non-Chebycheyv, it follows that there exists Bin [c, , ¢,]
such that Bhas 0 and 44 = 0 as best approximations in M, with || 4 || = 1.
Thus, | Bl ={B— A| = || B+ A4|. This is the required 4. Let ¢ > 0.
Then by Theorem 2.3 there exist m positive integers &, ,..., k., . m 1, sequences
S f™ with | f¢| =1, i = 1,.., m and m scalars ry,..., r,, With r; > 0,
i=1,..,mand Y, r, = 1such that

@) 2111 r; Z:'o=1fjia§ij =0 k=1,.,n,
() | Tita v Tiea fiibey — I Bl < (/).
Define « = (o) by oy s = r; fiifori = 1,..,mand a;=0fori # ky ,..., k,
Then sup; | oy l < w for all i and T asup; | oy gl=LForT= (e [co , Cols

let oAT) = Yooy rs Yoa fiits, - Then it is easy to see that a€&[cq, co}*.
By (i), « € M*. By (ii") we have

[(B) — | Bl < (¢/2). Y
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To prove (i), let B € [c, , ¢o)* With || o + S]] < 1. Then
(«£B)B) <l Blll« £ <IBI
so by (1), | B(B)| < (¢/2). Similarly, since a € M*, we obtain
«B) BB —A4) <||B— Al =B

Thus, | B(B — A)| < (€/2). 1t follows that |B(4)]| < e.
We must now show (ii). Let

P = gl: Z Qs = 0:, P = gl. z ol > 0;, and N = gl: Z Nl < Oi.
j=1 i=1 =1

Since o € MY, a(d) = X5y Sy 0usa;; = 0. Thus, if N = ¢, then P’ = &,

and conversely. In this case (ii) holds trivially. Therefore, assume P’ = ¢

and N # ¢. Now Ticp Yooy ity -+ Sien Soger 0sils; = 0. Therefore,

Tier | 2;1 X | = Dien | 2:11 a;;a;; . Now suppose (i) is false. Then

)

i€P

o0
Z 05055

=1

= (¢/2). @

Also, Tien | Xoa austts; | = (€/2). Foreachi = 1,2,..., let A, = sup | ay; | =0,
the supremum taken over all j. Let A, = Y., A, > O0and Ay = Yep A; > 0.
Then Ap + Ay = 1. Let E} = 3 ,cp Z;; a;by; and Ey = ey Z:—.l abi; -
Then E, -+ E, = «(B) > || B|| — (¢/2) by (1). This implies that either (a)
E; > M| Bl — (¢/2)] or (b) E, > Afl| Bl — (&/2)] must hold. Suppose (a)
is true. Then using (2), we obtain

Y. Y. ulbyy +ai) > A Bl — (e/2) do + (¢/2) > Ap | Bl = Ao B + A
1eP j=1
But for each i in P, Yy ais(bi; + ai) < X;|| B+ A||. Thus,

Z Z ol + a) < Apll B+ Al

ieP j=1

Thus, we have been led to a contradiction. If (b) holds, we obtain a contra-
diction in a similar manner. Therefore, (ii) is proved.

THEOREM 4.2. Let M = [A4,,..., A,] be an n-dimensional Chebychev
subspace of X = [cy, ¢o)- Let iy < -+ <C i, denote a fixed but arbitrary finite
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number of rows. For T = (t;;) in X, define T = (t;;))e(ly X =+ X h)g
(s summands). Let X = {T: Te X}. Then M = [A4,,..., 4,] is an
n-dimensional Chebychev subspace of X.

Proof. First, we will show that M is a Chebychev subspace of X. Suppose
not. Then there exists Be X, |B|| = 1 such that B has 0 and A’ # 0 as
best approximations in M. Hence, there exist scalars A, ,..., A, not all 0
such that 4' = Y;  AAd;. Let A = Y, Ad, #0. Let 4 =4’ +#0,
where A = 1if|| A"} < land A = (1| 4" |)if | 4" || > 1. Since M is convex,

the set of best approximations to B in M is convex. Hence, 4 is a best

approximation to Bin M, and || B— A| = || B|| = 1. Define B = (b;;) in
X by
B B onrowsi,..,i,,
0 elsewhere.
Then ||B|| =| Bl = 1. Since | A|| < 1, we have | B — A|| = 1 = || B\.

Now since B has 0 as a best approximation in M, there exists fe M~
|\ =1, and f(B) = | B|| by Theorem 1.2. Define f on X by f(T) = f(T)
for all T'in X, It is easy to see that fe M+, f(B) = || B, and | f|| = 1. Then
by Theorem 1.2, B has 0 as a best approximation in M. Since (| Bl = [| B — 4],
Bhas 0 and 4 # 0 as best approximations in M. But this is a contradiction,
since M is Chebychev. Therefore, M is a Chebychev subspace of X.

Now suppose M is not n-dimensional. Then there exists 4 in M, (|4 || = 1,
with 4 = 0. Since dim M < o« = dimX, there exists B, | B|| = 1, such
that B has 0 (and, hence, A) as a best approximation in M. Define B = (b;,)
in X as in the first part of this proof. By duplicating the steps following that
definition of B, we can show that B has 0 and A 54 0 as best approximations
in M. Again we obtain a contradiction, thus showing that M is n-dimensional
and completing the proof of this theorem.

Theorem 4.2 can be utilized to obtain a sufficient condition for a finite
dimensional subspace of [¢,, o] to be non-Chebychev. If the spanning
matrices are dependent on at least one row, then the subspace is not
Chebychev. This is stated in the following corollary.

COROLLARY 4.3. Let M = [A,,..., A,] be an n-dimensional subspace of
[co s ol where A, = (af), k = 1,..., n. Suppose there exists a row i, and
scalars Ay ,..., A, not all O such that Ala}oj + -+ Anal; = 0 for all j. Then
M is not Chebychev.

Proof. Lets = 1 in Theorem 4.2, so we have one row i, . Then since M
is not n-dimensional, M is not Chebychev.

The adjoint T* of a bounded linear operator T from ¢, to ¢, is the mapping
from ¢,* to ¢,* defined by T*y* = yp*T. By [5, p. 201} ¢,* can be identified
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with /; . By [3, p. 478] we can see that T* e [/, , ;] and || T* || = || T|l. Recall
that /;* can be identified with /., . Hence, the second adjoint 7** e [/, , /.].
Now &, = ¢ C 1, . It is known by [3, p. 479] that T**: I, — [, is an exten-
sion of 7, i.e., for x € ¢y, T**(x) = T(x).

Let T be represented by the infinite matrix of scalars (a;), so that by
Theorem 2.1, if x = {x;} €¢,, ¥y = {y:} €¢,, then Tx = y can be expressed
by the equations

y‘l = Z Oéinj i: 1, 2,....

The norm of 7 is given by || T|| = sup, Z;;l | a;; |. Then by [5, p. 220], the
matrix (a;;) also defines a bounded linear operator 7” on /, into /,, with the
same defining equations and same norm. Thus, 7" is also an extension of 7,
ie, forxec,, T'(x) = T(x).

THEOREM 4.5. Let the bounded linear operator T on cy into ¢, be represented
by the infinite matrix of scalars (x;;), and let T' represent (oy;) considered as a
bounded linear operator from I, to I, . Then T' = T**,

Proof. Letb ={b)cl,andlet T'(b) = z = {z;} €L, , 50 Z; = Ypoq aisb;
for i = 1, 2,.... Let y* = {y,*} el;. For each j = 1, 2,..., define ¢; to be
that sequence in ¢, which has 1 in the jth place and O elsewhere. Then
T(e;) = (xy; Qs - ..). Therefore, T*y*(e;) = 351 yi*oy; . Let x = {x;} € ¢, .

Then x = }: _1 X;€; . Hence,

T*y*(x) = Z x(T*y*)e;) = Z X Z yi¥ou; . M

J=1 j=1 i=1

Now consider f = {f;} where f; = Y. yi*ay; for j =1, 2,.... Then we
have Y, | f; | < oo, where the interchange of limits is justified by a standard
theorem (see, e.g., [1, p. 398]). Hence, fel,. We also know T*y*e/,.
Moreover, for any x in ¢, , f(x) = (T*y*)(x) by (1). Thus, T*y* = f. Now,
justifying the interchange of limits in the same manner as above, we obtain

B(T*y*) = ) by Y, yi*ay = Z
j=1 =1 =1
Therefore, (T**b)(y*) = b(T*y*) = z(y*) = (T'b)(y*). Since this holds
for all y* in /; , we must have T**b = T'b. But b was arbitrary in I, . There-
fore, 7" = T**, and the proof is completed.
We conclude by noting that Theorem 4.5 permits the expression of the
principal results in this paper in terms of the second adjoint of a bounded
linear operator, rather than in terms of the operator’s matrix representation.

u[\/]s

@
*y *
byy oy = ZJ’i Zi.
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As an example of this, we give an equivalent formulation of Theorem 3.3
in the following corollary.

COROLLARY 4.6. Let A€[cy, ), A # 0. Then [A] is a Chebychev sub-
space of [cqy, ¢o) if and only if there exists 8 > 0 such that if x = {x;}el,
with | x;| = 1 for all j, and A**(x) = {y.}, then | y;| = 8 for all i.

Proof. By Theorem 4.5, if A = (a;;), then A** = (a;;), s0 y; = Z:»o:l agx;.
Then the given condition holds if and only if 4 satisfies the partition property.
The result then follows by Theorem 3.3,
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